Direct Potable Reuse Regulatory Update

Metro TAC May 17, 2023

S Central Area Concept Considering Two Reservoirs

- San Vicente is larger and would be Indirect Potable Reuse.
- Murray Reservoir is smaller and would be Direct Potable Reuse.
- Many factors involved in ongoing assessment.

Solution Central Area Small Scale Facility has Two Trains

53 MGD to Murray Reservoir considered DPR

 Indirect potable reuse regulations require minimum retention time of 60 days

 At 53 MGD, Murray Reservoir has retention time of 23 days

SD) CA DPR Criteria Developed for All Forms of DPR

Raw Water Augmentation (RWA)

Raw Water Augmentation without a reservoir

Treated Water Augmentation (TWA)

- DPR criteria developed to be protective of all forms of DPR
- This resulted in criteria targeted towards TWA projects

SD Regulatory Development Timeline

SD Pathogen Control

	Groundwater Recharge	Surface Water Augmentation	Direct Potable Reuse
Virus	12	12 to 14	20
Giardia	10	10 to 12	14
Cryptosporidium	10	10 to 12	15

 4 processes providing at least 1-log for <u>each</u> pathogen

- GWR is 3 processes total
- SWA is 2 to 3 processes total
- 3 mechanisms for each pathogen including:
 - UV disinfection (300 mJ/cm²)
 - Physical separation
 - Chemical disinfection

sb Monitoring & Control

SD Key Definitions

An activity, procedure, or process that is essential for removing pathogens or chemical hazards

Response Time – Pathogens & Acute Chemicals

Diversion Point

Response Time =
$$\sum t_1, t_2, t_3$$

- t_1 = time interval between online measurements
- t_2 = time for SCADA to access data
- t_3 = time for SCADA to implement a response:
 - a. Determine an exceedance is occurring,
 - b. Actuate a diversion or shutoff valve, and
 - c. Divert or completely stop flow to distribution system

Response Time – Pathogens & Acute Chemicals

Diversion Point

CP₁ CP₂ CP₃ CP₄ CP_4 response time must be <u>faster</u> than the T₁₀ from CP₄ to the diversion point CP₁ response time must be <u>faster</u> than the T₁₀ from CP₁ to the diversion point t_1 = time interval between online measurements

Response Time = $\sum t_1, t_2, t_3$

- t_1 = time for SCADA to access data
- ₃ = time for SCADA to implement a response:
 - a. Determine an exceedance is occurring,
 - b. Actuate a diversion or shutoff valve, and
 - c. Divert or completely stop flow to distribution system

SD Technical, Managerial, Financial Capacity

(17) *Required if pathogen or chemical control provided at the facility

Questions/Discussion

